- Browse
- » Nonlinear regression with R
Nonlinear regression with R
Author
Publisher
Springer
Publication Date
2008
Language
English
Description
Loading Description...
Table of Contents
From the Book
Preface
1. Introduction
1.1. A stock-recruitment model
1.2. Competition between plant biotypes
1.3. Grouped dose-response data
2. Getting Started
2.1. Background
2.2. Getting started with nls()
2.2.1. Introducing the data example
2.2.2. Model fitting
2.2.3. Prediction
2.2.4. Making plots
2.2.5. Illustrating the estimation
2.3. Generalised linear models
Exercises
3. Starting Values and Self-starters
3.1. Finding starting values
3.1.1. Graphical exploration
3.1.2. Searching a grid
3.2. Using self-starter functions
3.2.1. Built-in self-starter functions for nls()
3.2.2. Defining a self-starter function for nls()
Exercises
4. More on nls()
4.1. Arguments and methods
4.2. Supplying gradient information
4.2.1. Manual supply
4.2.2. Automatic supply
4.3. Conditionally linear parameters
4.3.1. nls() using the "plinear" algorithm
4.3.2. A pedestrian approach
4.4. Fitting models with several predictor variables
4.4.1. Two-dimensional predictor
4.4.2. General least-squares minimisation
4.5. Error messages
4.6. Controlling nls()
Exercises
5. Model Diagnostics
5.1. Model assumptions
5.2. Checking the mean structure
5.2.1. Plot of the fitted regression curve
5.2.2. Residual plots
5.2.3. Lack-of-fit tests
5.3. Variance homogeneity
5.3.1. Absolute residuals
5.3.2. Levene's test
5.4. Normal distribution
5.4.1. QQ plot
5.4.2. Shapiro-Wilk test
5.5. Independence
Exercises
6. Remedies for Model Violations
6.1. Variance modelling
6.1.1. Power-of-the-mean variance model
6.1.2. Other variance models
6.2. Transformations
6.2.1. Transform-both-sides approach
6.2.2. Finding an appropriate transformation
6.3. Sandwich estimators
6.4. Weighting
6.4.1. Decline in nitrogen content in soil
Exercises
7. Uncertainty, Hypothesis Testing, and Model Selection
7.1. Profile likelihood
7.2. Bootstrap
7.3. Wald confidence intervals
7.4. Estimating derived parameters
7.5. Nested models
7.5.1. Using t-tests
7.5.2. Using F-tests
7.6. Non-nested models
Exercises
8. Grouped Data
8.1. Fitting grouped data models
8.1.1. Using nls()
8.1.2. Using gnls()
8.1.3. Using nlsList()
8.2. Model reduction and parameter models
8.2.1. Comparison of entire groups
8.2.2. Comparison of specific parameters
8.3. Common control
8.4. Prediction
8.5. Nonlinear mixed models
Exercises
Appendix A. Datasets and Models
Appendix B. Self-starter Functions
Appendix C. Packages and Functions
References
Index
Excerpt
Loading Excerpt...
Author Notes
Loading Author Notes...
More Details
Contributors
ISBN
9780387096162
9780387096155
9780387096155
Staff View
Loading Staff View.

